更新时间:2022-09-16 14:11:41
《四年级数学下册《四则运算》教案精选范文》可能是您在寻找教学工作计划过程中需要的内容,欢迎参考阅读!
一、教学目标
1.结合具体情境,理解加、减、乘、除四则运算的意义,掌握四则运算中各部分间的关系,对四则运算知识进行较系统的概括和总结。
2.认识中括号,掌握四则混合运算的顺序,能进行简单的四则混合运算。
3.让学生经历解决实际问题的过程,学会用四则混合运算知识解决一些实际问题,感受解决问题的一些策略和方法。
4.通过数学学习,提高抽象概括能力,养成认真审题、独立思考等良好的学习习惯。
二、教学内容
加、减法的意义和各部分间的关系
四则运算 乘、除法的意义和各部分间的关系(含有关0的运算)
四则混合运算的顺序
解决问题
三、编排特点
1.增加了四则运算的意义和各部分间的关系。
2.突出对知识的梳理和总结。
四、教学重、难点
教学重点:1.掌握三步运算的运算顺序并能正确计算。
2.会解答用两、三步计算解决的实际问题。
教学难点:1.理解“0”不能做除数的道理。 2.解决实际问题。
五、课时安排
本单元共安排5课时(仅供参考,老师们可依据学生情况进行调整)
六、教学建议
1.要注意在实际问题中进行数量关系分析和解答思路的教学。由于本单元是将解决问题和四则混合运算有机结合起来编排的,因此,在教学中每节课都要注意在实际问题中进行数量关系分析和解答思路的教学,这是本单元教学的重点和难点之一。
(1)要注意加强审题和对数量关系的分析。
●有哪些数量?这些数量分别表示什么?
● 哪两个数量之间有关系,有什么关系?
(2)帮助学生掌握解决问题的方法与策略。根据问题选择分析方法:
● 从条件入手● 从问题入手● 从关键句入手
(3)帮助学生掌握思维的外化形式。
●示意图 ● 线段图 ● 枝形图
(4)在训练课中要注意补充相应的习题进行训练。因为关于整数的三步的实际问题在本册中已达到最难的程度,进入了收尾。
2.将探求解题思路与理解运算顺序有机结合起来。在解决问题的过程中,使学生掌握解决问题的策略和方法,同时体会运算顺序规定的必要性。因此,教学中要把握好要求,即在解决问题时可要求学生列综合算式来解决问题,然后在综合算式中明确先求什么,再求什么,与运算顺序结合起来。但老师要明确,在解决问题中并不要求学生一定列综合算式解答。
3.教学中为学生提供自主探索与合作交流的情境和空间。针对每个例题的教学,要充分利用教材提供的生活情境,或现实生活创设现实情境,(知识点要保留)放手让学生独立思考,自主探索,并在合作交流中研讨。在每层的教学中要注意遵循研讨的六环节。
4.关于计算方面的训练。
(1)加强口算的训练。
(2)培养学生认真审题的好习惯。
一审运算符号。
二审数据特点。
三定计算方法。
(3)要培养学生认真书写的好习惯。
(4)教给学生抄题、抄数的方法。
(5)做题时速度适中,一步一回头。
(6)关于作业的批改问题。
(7)练习要经常化。
(8)坚持弃九验算法。
学情分析:
第一课时(例1)
教学目标:
1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3.培养学生发现数学知识和运用数学知识解决问题的能力。
教学重、难点:
教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。
教学难点:从实例中探究加、减法的互逆关系。
教学准备:课件
教学过程
一、理解加、减法的意义
1.理解加法的意义。
出示例1(1)一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814 km,格尔木到拉萨的铁路长1142 km。西宁到拉萨的铁路长多少千米?
(1)问:根据这道题你收集到了哪些信息? (让学生尝试用线段图表示)
(2)请学生根据线段图写出加法算式。
814+1142=1956 或 1142+814=1956
师:为什么用加法呢?
那怎样的运算叫做加法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)
(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)
(4)说明加法各部分名称。
2.理解减法的意义
能不能试着把这道加法应用题改编成减法应用题呢?
(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:
师:根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142 或 1956-1142=814
(2)问:怎样的运算是减法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。
二、探究、理解加法和减法之间的关系。
1.问:上面的这些算式,你觉得它们之间有什么联系?观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。然后以小组的形式进行讨论。
(小组讨论。个别汇报)
2.根据学生的汇报,出示:
加数 + 加数 = 和 被减数 - 减数 = 差
3.师归纳并小结:减法是加法的逆运算。(板书)
4.加法各部分之间的关系。
出示:814+1142=1956
814=1956-1142
1142=1956-814
问:观察算式,你能得到什么结论?
和=加数+加数 加数=和-另一个加数
5.减法各部分之间的关系。
出示:800-350=450
800=450+350
350=800-450
问:通过观察这组算式,你能得出减法各部分的关系吗?
观察这组算式讨论归纳得:
被减数=差+减数 减数=被减数-差
三、练习
1.“做一做” 2.练习一 1题
四、总结
师:谁来说说我们这节课学习了些什么?你知道了什么呢?圃
板书 加、减法的意义和各部分间的关系
加数 + 加数 = 和 被减数 - 减数 = 差
和 - 加数 = 加数 减数 被减数 - 差
被减数 = 减数 + 差
作业布置
A层:练习一2、3、4、5 B层:练习一2、4、5 C层:练习一2、4
第二课时(例2、例3)
教学目标:
1.理解乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用,知道关于0的运算应该注意的问题。
2.学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
3.在分析过程中,培养学生的推理、概括能力。
4.培养学生养成良好的验算习惯。
教学重、难点:
教学重点:掌握乘、除法各部分间的关系,并对乘、除法进行验算。
教学难点:理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答,理解0不能做除数及原因。。
教学准备:课件
教学过程
一、谈话导入。
我们已经做过大量的整数乘除法计算和应用题的练习,对于乘除法知识也有了初步的了解.这里我们要在原有的知识基础上,对乘除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:乘除法的意义)
二、理解乘除法的意义。
1.理解乘法的意义。
出示例1(1)
用加法算:3+3+3+3=12
用乘法算:3×4=12
师:为什么用乘法呢?
那怎样的运算叫做乘法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是乘法。)
小结:求几个相同加数的和的简便运算,叫做乘法。(出示乘法的意义)说明乘法各部分名称。
2.理解除法的意义。
能不能试着把这道乘法应用题改编成除法应用题呢?
出示例2(2)(3)
(1)问:与第(1)题相比,第(2)、(3)题分别是已知什么?求什么?怎样算?
列式计算:12÷3=4 12÷4=3
(2)问:怎样的运算是除法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。说明除法各部分名称。
(4)教学除法是乘法的逆运算。
引导学生观察:第②、③与①的已知条件和问题有什么变化?
明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算。
3.乘除法各部分间的关系。
(1)引导学生根据上面第①组算式总结乘法各部分间的关系。
(2)教师引导学生进行概括:积=因数×因数一个因数=积÷另一个因数。
(3)引导学生观察第②组算式,自己总结出除法各部分间的关系。
商=被除数÷除数 除数=被除数÷商 被除数=商×除数
(4)想一想:在有余数的除法里,被除数与商、除数和余数之间有什么关系?
(5)练习:做一做
三、0的运算
1.计算:6+0、6-0、6×0、6÷0
2.引发学生讨论:6÷0=?为什么?
讨论:0不能作除数。6÷0不可能得到商,因为找不到一个数同0相乘得到6。
讨论:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
小结:归纳所有0的运算
一个数加上0,还得原数。被减数等于减数,差是0。0除以一个非0的数,还得0。一个数和0相乘,仍得0。
3.练习二7题
四、课堂小结
本节课你有哪些收获?你最欣赏谁?
板书
加、减法的意义和各部分间的关系
积=因数×因数 商=被除数÷除数
一个因数=积÷另一个因数 除数=被除数÷商
被除数=商×除数
0不能作除数
作业布置
A层:练习二2、4、9、11、12
B层:练习二2、4、9、11
C层:练习二2、4、9
第三课时(例4)
教学目标:
1.通过学习,学生理解带中括号的四则混合运算的运算顺序,并能熟练习的进行运算。
2.培养学生良好的学习习惯。
教学重、难点:理解带中括号的四则混合运算的运算顺序。
教学准备:课件
教学过程
一、复习引入:
1.一个算式里只有加减法或只有乘除法,按怎样的顺序计算?举例
2.一个算式里有加减法,又有乘除法,按怎样的顺序计算?举例
3.一个算式里有括号,按怎样的顺序计算?举例
4.今天我们学习“四则运算”,到底什么是四则运算呢?
概括:加法、减法、乘法和除法统称四则运算。我们以前学习的混合运算就是四则运算。
二、新知探究
出示例4:96÷12+4×2
1.说说运算顺序。
2.如果在96÷12+4×2的基础上加上小括号,变成96÷(12+4)×2,运算顺序怎样?(先算小括号里面的)
96÷(12+4)×2
=96÷16×2
=6×2
=12
3.如果在96÷(12+4)× 2的基础上加上中括号“[ ]”,变成另一个算式96÷[(12+4)× 2],运算顺序怎样?(说明:一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的)
96÷[(12+4)× 2]
=96÷ [16×2]
=96÷ 32
=3
4.阅读“你知道吗?”
5.总结:
运算顺序: (1)在没有括号的算式里,如果只有加、减法或者只乘、 除法,都要从左往右按顺序计算。 (2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。 (3)算式里有括号的,要先算括号里面的。
三、巩固练习
1.做一做
2.选择题:
(1)47与33的和,除以36与16的差,商是多少?正确列式是( )
A、47+33÷36-16 B、(47+33)÷(36-16) C、(36-16)÷(47+33)
(2)750减去25的差,去乘20加上13的和,积是多少?正确列式是( )
A、(750-25)×(20+13) B、(20+13)×(750-25)C、750-25×20+13
四、课堂总结
本节课你有哪些收获?你最欣赏谁?
板书 四则运算
先乘除,后加减,遇到括号先。
作业布置
A层:练习三1、2、3、6、7 B层:练习三1、2、3、6 C层:练习三1、2、3
第四课时(例5)
一、教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
二、学情分析:
(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。
(2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
三、教学目标:
1.知识与技能
使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。
2.过程与方法
通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的思想。
3.情感态度与价值观
使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法解决问题的优越性。
五、教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
六、教学过程:
(一)创设情景,提出问题。
1.同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?
指生回答(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?
2.有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
(二)探究交流,尝试解决问题。
1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?
让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(课件出示)
3.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
4.怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
①尝试列表法
为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示。)
②假设全是鸡
8×2=16(条)(如果把兔全当成鸡一共就有8×2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
③假设全是兔
我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法、假设法)
好,让我们一起再次回到1500年前的这道题目:(出示课件),看看古人是怎样解决“鸡兔同笼”问题的?
1.假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚。
2.这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3.这时脚的总数与头的总数之差13-8=5,就是兔子的只数。
(三)练习巩固,反思提升。
1.课件出示“做一做” 生活中“鸡兔同笼”的问题。
(1)龟鹤问题
有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
集体反馈。
(2)新星小学“环保卫士”小分队12人参加植树活动。男生每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。男、女生各有几人?
(3)引导学生建立“鸡兔同笼”问题的数学模型。
看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。今后我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
(四)总结。
本节课你有什么收获?你们对自己这节课的表现满意吗?
(五)课外延伸与作业。
1.阅读并思考:课本105页的“阅读资料”
2.完成练习二十六的1-3题
教学目标:
1 、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。
2 、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。
3 、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。
教学重点:从不同的角度分析,掌握解题的策略与方法。
教学流程:
一、创设情境,明确目标
1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。
2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的'知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。
二、自主探索,合作交流
1 出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”
(1)你从中获取什么信息?……
(2)请你们猜一猜将鸡、兔可能是几只?(……)
(3)把你猜的过程给大家说一说
(4)板书学生的过程
鸡 1 2 3
兔 4 3 2
腿 18 16 14
(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)
2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”
(1)自己先想一想如何利用列表来解决?
(2)小组内交流一下自己的想法。
(3)独立完成列表。
(4)汇报想法和过程
小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。
通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)
小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)
引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。
小组3:取中列表------假设鸡兔各有10只
小组4:方程
小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)
三、适时反思,掌握策略(两题任选其一)
“同学们,鸡兔同笼”
1、观察三种列表的方法,比较异同?
2、谈一谈;你们有什么感受?
四、深化练习,拓展延伸
1、课后练习1、2、3(比较不同-----答案是否唯一)
2、通过今天的学习,有什么收获?
教学目标:
1.通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略, 归纳出解决这类问题的最优策略 。
2、通过讨论、探究、逻辑推理等活动,寻找次品的优化方法,解决身边的数学问题,感受数学在日常生活中的广泛应用,经历数学方法从具体到抽象、从特殊到一般的提炼过程,初步培养学生的应用数学的意识和解决实际问题的能力。
教学重点:经历观察、猜测、判断、推理的思维过程,归纳出解决问题的最优策略。
教学难点: 体会解决问题有多种策略,通过解决实际问题,初步学会运用最优化的方法解决问题。
教具准备: 瓶装口香糖、课件
教学设计:
一、 情境导入,感受新知
1、课件出示影音资料:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是一个不合格的零件(橡皮圈)引起的。可见,不合格零件的危害有多大。
2、你从播放的影片中看到了什么 ?
3、飞机失事有可能是什么原因造成的?
这节课我们就来研究如何找出不合格产品,也就是找次品。
板书:找次品。
二、学用天平,了解原理
1、老师这里有5瓶口香糖,其中一盒少了几颗,但是我不知道是哪一瓶?请同学们帮帮老师好吗?你有什么办法把它找出来?
2、你们都很聪明,老师听了你们的建议决定用天平来找次品。那你们会用天平吗?
3、怎样用天平来找次品?谁能边演示边把找次品的过程说给大家听?(师板书)
小结我们用天平找次品时,不管我们把零件分成几份,天平一次能称几份?
三、归纳策略,体会最优
如果老师这里不是5瓶,而是有9瓶口香糖中有一瓶我多放了几颗(比其它几瓶重一些),你至少需要几次就能保证找出这瓶?
1、现在我们不用天平了,用画图一步一步地分析、推理,请同桌的合作学习。
课件演示:
课件出示:
零件个数 分的份数 每份各几个 保证能找到次品的次数
9 9 1,1,1,1,1,1,1,1,1 4
9 5 2,2,2,2,1 3
9 3 3,3,3 2
9 3 4,4,1 3
2、请同学们仔细观察这表,你有什么发现?你喜欢那种称法?
用天平来找次品我们把待分物品分成3份,尽量平均分这种方法最好。
板书:分成3份,尽量平均分 最好
四、应用策略,拓展提高
1、你们通过实验、讨论找到了解决问题的最优方法。孙悟空和猪八戒也来凑热闹了。孙悟空把手上的珍珠递给猪八戒说:八戒,这13颗珍珠中有一颗要轻些,是我用猴毛变的。如果你能用最少的次数保证能找出假珍珠,这12颗珍珠就归你了。猪八戒抓破脑袋也没有想出办法。我们能用学到的知识帮帮八戒,好吗?
五、课堂回顾,知识延伸
1、通过这节课你学会了 什么 ?
2、这节课我们研究的是总数可以平均分成3份的这一类找次品问题,当然在生活中有些次品不止一个,不知是较轻还是较重;总数里可能有也可能没有等等。如果感兴趣的同学,课后可以再去研究研究。
板书:
找 次 品
用天平称 分成3份 平均分--最优
教学内容
人教版小学数学四年级下册P17—18。
学习目标
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.经历探索加法交换律和加法结合律的过程,培养学生的概括推理能力。
3.获得成功的体验,增强对数学的兴趣和信心,形成独立思考和探究问题的意识习惯。
学习重点:
理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
学习难点:
经历探索加法交换律和加法结合律的过程,发现并概括出运算律。
学习准备
课件、学习单
学习过程
一、创设情境,提出问题。
1.师:暑假是外出旅游的大好时节,好多人都旅游去了,当然李叔叔也不例外,看他是怎么去的?课件出示:
生:骑自行车。
师:你们看的真准,再仔细看看,你从图中还了解到了哪些信息?
生1:李叔叔准备骑车旅行一周。
生2:李叔叔上午骑了40km,下午骑了56km。
2.师:根据了解到的信息你能提出什么问题?
生1:李叔叔今天一共骑了多少千米?
生2:李叔叔今天上午比下午少骑多少千米?
二.合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:今天我们选取“李叔叔今天一共骑了多少千米”来做我们的学习材料,要解决这个问题我们应该怎么列式?
生1:40+56(板书)
师:还可以怎样列式?
生2:56+40(板书)
师:它们之间可用什么符号连接?
生:等号。(师板书等号)
师:为什么可以用等号连接?
生1:因为它们的和都是96千米。
生2:因为它们都是求的李叔叔一天行的总路程。
2. 课件出示:
123+377 Ο 377+123
1124+76 Ο 76+1124
师:这两道题,它们的算式之间的能用等号相连吗?请你算一算!
生:能
师:为什么?
生:因为它们的和都相等。
师板书:
3. 师:观察这三个等式,你发现了什么吗?
生:两个数相加,交换加数的位置,和不变。
师:从刚才的发现中,你们会猜想到什么呢?
生:是否所有的加法算式两个加数交换位置和不变呢?
(板书: 两个数相加,交换加数的位置,和不变 ?)
4. 师:口说无凭,你打算怎样验证咱们的猜想?
生:我们可以再举几个例子来验证一下。
师:那请大家拿出本子来,举几个这样例子来验证看看!
(生独立举例验证)
5. 师:谁来上台说说你是怎么举例验证的?
生:(百以内的加法、多位数的加法、小数加法……)
师:通过刚才这两位同学的举例,都能证明我们的发现是正确的。谁有没有发现交换加数位置和不相等的情况吗?
生:没有。
师:也就是说,我们举不出反例,那证明我们该刚才的发现是正确。
师:谁能够再一次总结一下我们刚才发现的这个规律?
生:两个数相加,交换加数的位置,和不变。
师:旁边的问号是不是可以擦掉了?!
师:这个规律,数学家们给它起了一个名字,叫做“加法交换律”
(板书加法交换律)
6.师:刚才同学们举了那么多的例子,这样的例子能举完吗?
生:举不完。
师:是啊,像这样的等式我们能写出很多很多来。
(师边说便在等式的下面板书“……”)
师:既然像这样的等式写不完,你能否开动你的脑筋,想办法用一个算式表示出所有的等式吗?试一试,把你的想法在本子上写出来。
(学生尝试)
7.师:谁来说一说你是用一个怎样的算式表示加法交换律的?
生1:甲数+乙数=乙数+甲数。
生2:△+□=□+△
生3:a+b=b+a
师:这三位同学的方法能表示出所有的情况吗?
生:能。
师:这三种方法,你更欣赏哪一种?
生:第三种。
师:说说你的理由。
生:因为第三种更方便、更简洁。
师:其实咱们的数学家想到的式子,跟生3的想法不谋而合,也是a+b=b+a。
(师板书a+b=b+a)
师:你觉得a 和 b可以表示哪些数?
8.师:同学们现在回想一下,我们是怎样探索出“加法交换律”的,同桌互相交流一下。
生1:我们是先观察发现,再举例验证,最后是总结规律。
师:很简单明了,还有谁来说一说?
生2:我们第一步是观察发现,我观察这三个等式,发现了任意两个数相加,它们的和不变,第二步是举例验证,我们举了好多例子,证明我们是正确的,最后一步是总结规律,总结的规律是“两个数相加,交换加数的位置,和不变”。
师:说的好不好?把掌声送给他!
(板书:观察发现→举例验证→总结规律。)
9.师:我们刚才是通过观察发现,然后是举例验证,再总结规律,这是一种非常好的学习方法。刚才大家经历了一次像数学家一样做数学的过程,那你能不能用这种学习方法去探索其他的运算定律呢?
生:能。
(二)探究加法结合律
1.师:现在请大家自学<学习单一》,自学之前老师给大家提供了一个学习锦囊,谁愿意大声读一遍?
生:
一.观察发现。
仔细算出每一组题的结果,你发现了什么?
二.举例验证。
你能再举出几组这样的例子吗?
三.总结规律。
你能用符号表示这个运算定律吗?
2.师:下面就请大家按照自学锦囊上的提示自学,开始。
(生独立完成)
师:完成的同学同桌交流一下。
3.师:都完成好了吗?谁愿意到前面分享一下你的自学收获?
生:我发现第一组算式都等于288,第二组算式都等于273,第三组算式都等于507,它们都可以用等号来连接。
师:每一组题的两道算式的计算方法有什么不一样吗?
生1:前一道算式都是先算前两个数的和,再和第三个数相加,后一道都是先算后两个数的和,再和第一个数相加。
师:刚才这位同学分享了这么多自学的收获,那你还发现了什么?还其他的发现吗?
生:我还发现这三组题,后面的题都改变了运算顺序。
师:运算顺序改变了,那么什么没有变?
生:和不变。
师:还有没有什么不变?
生:数字的位置没变,只是运算顺序变了。
4. 师:刚才通过这三组算式发现了一个非常重要的规律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。那这个规律对不对还需要我们怎么样?
生:举例验证。
师:那谁来说一说你举的例子?好,你来!
生1:(24+76)+28=24+(76+28)(师板书)
师:谁再来分享一下你举的例子?
生2( 8+7)+3=8+(7+3)
师:谁再来举一个?
生3:(325+178)+22=325+(178+22),他们都等于525.
5.师:谢谢大家的分享。刚才,我们大家进行了举例验证,你们验证我们发现的规律对不对?
生:对!
师:有没有举出反例的?
生:没有。
师:那由此可以说明,我们该发的规律是……
生:正确的!
师:下面请同学们把我们发现的规律齐读一边,预备,起!
生::三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
师:刚才发现这个重要的规律,我们把它叫做加法结合律。
(板书:加法结合律)
6.师:这是我们发的第二个运算定律,那你能用符号表示加法结合律吗?
生:(a+b)+c=a+(b+c)。
7.师:今天这节课,我们采用观察发现、猜想验证、总结规律的学习方法,发现了两种的加法运算定律,现在你还有什么不懂得、想提出来供大家研究吗?
生:加法交换律和加法结合律有什么相同点和不同点?
师:这个问题很有研究的价值,下面就请大家小组内交流研究,开始!
(生小组交流,师巡视)
师:哪一位同学到前面来分享一下你们讨论的结果?
生1:我们小组发现的它们的相同点是都是加法,和不变;不同点是加法交换律的加数是两个数,加法结合律的加数是三个数。加法交换律是数字的位置变了,加法结合律是运算顺序变了。
师:你们同意吗?还有和这一组不一样的吗?
师:好的,看来其他组的同学的发现同他们是一样的,我们班的同学观察力和思考力非常强,那下面,我们就运用我们学会的本领来练一练,解决生活中的实际问题!
三、巩固练习,拓展提高。
1.下列等式各运用了什么运算定律?
2.你能( )中填上适当的数吗?
3.今天我和妈妈一起逛超市,看到体育用品柜台有下列物品:
4. 小明在上课的时候,老师出了一道这样的题目:
四.课堂总结。
1.本节课你什么收获?还有什么疑问?
2.师:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。你看,数学家能总结出来的运算定律我们也能总结出来,我相信只要我们在以后的学习中勤动脑、多动手,一定可以把数学学得更棒!
五.板书设计
一、教学内容:
乘法分配律的应用
二、教学目的:
1.引导学生能运用乘法分配律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
(一)、复习准备
出示:
1.口算:
73+27 138×100 100-64 64×1 8×9×125 (4+40)×25
2.在里填上适当的数。
302=300+ (300+2)×43=300×+2×
2003=2000+ (2000+3)×14=2000×+×
(二)、新授
我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。
出示102×( )
学生任意填上一个两位数。
老师迅速说出它的得数,而不用笔算。
出示:计算102×43 小组讨论完成。
学生可能出现:
(1)(100+2)×43 (2)102×(40+3)
在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。
练习:
(1)在里填上适当的数。
3001×84=×84+×84 92×203=92×(200+)
=92×200+92×
(2)计算102×24
出示:9×37+9×63
学生在练习本上独立完成。
(1)9×37+9×63
=333+567
=900
(2)9×37+9×63
=9×(37+63)
=9×100
=900
找出不同的方法,进行板演。
引导学生对比两种方法,重点理解、说明第二种方法。
小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。
在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。
另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。
练习:(80+8)×25 32×(200+3) 35×37+65×37 38×29+38
讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?
订正时,说明怎样运用运算定律简算的。
引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。
(三)、巩固练习
1. 师生对出题。
我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。
2.根据乘法分配律把相等的算式用“=”连接起来。
23×12+23×88 (35+45)×12 (11×25)×4 25×(4+40)
讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改?
3.P38/5
(四)、小结
谈收获。
(五)、作业:P38/6—8
板书设计:
乘法分配律的应用
计算102×43 9×37+9×63 9×37+9×63 38×29+38
102×43 =333+567 =9×(37+63) =38×(29+1)
=(100+2)×43 =900 =9×100 =38×40
=100×43+2×43 =900 =1520
=4300+86
=4386
课后反思:
《轴对称》的教学设计
一、 导入
师:上课之前我们先来玩个游戏,看一个图形的一部分,大家猜一猜这个图形是什么?
课件出示:一架飞机的一半。
生:一架飞机。
课件出示:
师:恭喜你们答对了,继续。
课件出示:奔驰汽车标志的一半。
生:奔驰汽车的标志。
课件出示:
师:同学们的想象能力太丰富了!谁来说一说你是怎么猜的呢?
生1:因为轴对称图形的两边是一模一样的,所以看到一半就能想到一半。
师:也就是说:轴对称图形沿着对称轴对折会怎么样?
生:完全重合。
师:那条折痕我们把它称为对称轴。
师:那你们能画出它们的对称轴吗?用手比划比划。
生:用手比划,课件同步出示对称轴。
师:看来,有的轴对称图形不止一条对称轴。
二、 新授
例1教学:
师:继续,课件出示:松树的一半。
生:一棵松树。
师:要是你能够看到一半就能在方格纸上画出它的一半,那你就厉害啦!
生:在1号方格纸上画,教师巡视指导。
师:画好了吗?谁来代表你小组说一说你是怎么画的?
生1:看着左边的样子一段一段画的……
贴学生作品:
师:你是一段接着一段画的!咦,老师有点不明白,谁来说一说他这一段是怎么画的呢?(指着第一段)
生:看斜的2格画的。
师:这也是斜的2格,你怎么就不画这呢?(指另一个斜的2格)
生:那样的话就不会完全重合。
师:那这个点对折后会与那个点重合?
生:指这个点的对称点。
师:是这样的吗?咱们借助课件看看。
生:重合了。
1. 发现对称点到对称轴的距离相等
师:像这样对折后能够完全重合的点就是一组对称点。为了研究方便,我们把这两个点分别记作:A点、A'点点我们称它们为对称点。你还能找到其它的对称点吗?谁愿意上来指一指?
生:指。
生:指对称点。(B、B')
师:仔细观察这两组对称点,你们找到它们之间的关系吗?
生:对称点到对称轴的距离相等。(板书)
师:你真善于观察,下面我们一起来数一数A点、A'点以及B点、B'点到对称轴的距离。
师总结:通过数一数,我们发现对称点到对称轴的距离相等,这是轴对称图形的一个特点(板书课题)
2.发现对称点的连线与对称轴互相垂直
师:现在老师有一个疑问,点E'和点A到对称轴的距离都是2格,那它们怎么不是一组对称点呢?
生1:它们不在一条线上。
生2:对称点要在一条水平线上。
生3:对称点的连线一定要与对称轴互相垂直。
师:我们把一组对称点连起来,这条线与对称轴是什么关系?(课件将对称点进行连线,学生进行观察)
生:互相垂直。
师:其他的对称点的连线,也会和对称轴互相垂直吗?咱们再来看看。(课件将其它对称点进行连线,学生进行观察)
生:也是互相垂直。(板书:对称点的连线和对称轴互相垂直。)
师:通过连一连,我们发现对称点的连线和对称轴互相垂直,这是轴对称图形的另一个特点。
3.发现对称点有无数组
师:再来看看我们刚刚找出的对称点,它们都是什么样的点?(教师用手指线的端点)
生:线段的端点。
师:除了这几组点,图中还有其他的对称点吗?你能找到它们吗?
(点一个K点,请一个同学来找一找,再点一个G点,以及端点上的点的对称点……)
师:可以找到多少组对称点?
生:无数组。
师:那为什么你们一开始只找这几组呢?
生:因为它们容易数,很特殊,很关键。
师:是的,一个轴对称图形上有无数组对称点,但是有些对称点比较特殊,在轴对称图形中发挥着关键的作用。
4. 发现又好又快的画法
师:同学们,又是再让你们画一次松树图的一半,你们觉得怎样才能又好又快呢,和你的同桌说一说?
生:找端点的对称点,描点,最后依次连线。
例2的教学:
师:行,下面就用你们总结的方法再来画一个。
课件出示:例2主题图:
生:在书本上画,师巡视指导。
师:谁来说一说,怎样画又好又快。
生:根据对称点到对称轴的距离相等,我先找到线段的端点,然后再来找对称点,最后依次连线。(课件同步出示)
师:你真是一个充满智慧的孩子!下面我们借助课件再来回顾一下这个同学的画法。
生:学生看课件。
师:我们先怎么?然后?最后?引导学生得出:板书
(1)找(端点)的对称点;
(2)描点;
(3)用(直尺)依次连接。
三、练习
师:接下来,同学们想不想自己设计一个轴对称图形呢?同桌之间相互合作,一个人在方格纸上画出轴对称图形的一半,另一个人补全另一半,我看哪一组同学画的又好又快,听明白了吗?开始吧
生:学生在合作画。
师:画好了吗?下面我们来欣赏下面几个同学的作品。(从对与错和艺术性两个角度来欣赏)
四、谈收获
师:不知不觉一节课马上就要结束了,谁来说一说你有什么收获。
教学内容:轴对称;平移。
教学目标:
1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学重、难点:
1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学建议:
1、注意让学生真正地、充分地进行活动和探究。
2、恰当把握教学目标。
3、注意知识的科学性。
章节名称 图形的运动(二) 课 时
课标要求
教学目标 1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
内容分析
学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。
学情分析 在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
教学重点 1、 认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学难点 1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
学生课前需要做的准备工作
教学策略
轴对称
教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
教学重难点:认识图形的对称轴,并能画出轴对称图形。
教学环节 问题情境与
教师活动 学生活动 媒体应用 设计意图
目标达成
导入新 课 一、创设情境
出示轴对称图片
师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形)
二、复习旧知
1、你还见过哪些轴对称图形?
2、什么样的图形是轴对称图形?
3、看书中图片,画出对称轴。
三、学习新知
1、出示例1
(1) 这幅图对称吗?
(2) 中间这一条直线表示什么?
(3) 点A和点A在这幅图中是两个对应点,它们到对称轴的距离都是( )个小格。
(4) 点B和点( )是对应点,它们到对称轴的距离都是( )个小格。
(5) 点C和点( )是对应点,它们到对称轴的距离都是( )个小格。
(6) 我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离( )。
2、小结:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。
2、出示例2
(1)引导学生思考:
A、怎样画?先画什么?再画什么?
B、每条线段都应该画多长?
(2) 在思考的基础上,用铅笔试画。
(3)小结:
1、找出所给图形的关键点。
2、数出或量出图形关键点到对称轴的距离。
3、在对称轴的另一侧找出关键点的对称点。
4、按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。
三、课堂练习:P84做一做
四、 课堂小结: 这节课你有什么收获?
(二) 练习课
教学内容 图形运动(二)教材P88 练习二十一第1~6题
教学目标 一、知识与技能:
通过操作性的系列活动,使学生能按要求画出简单的平面图形平移后的图形。
二、过程与方法:
在操作、交流、讨论、辨析等活动中,培养学生观察问题、分析问题、解决问题的能力。
三、情感、态度、价值观:
创设活动情境,使学生能主动与他人合作交流并获得积极的情感体验,感受该知识的生活价值。
教学重点 认识图形的平移变换,探索它的基本性质。
教学难点 能按要求画出简单的平面图形平移后的图形。
教学准备 多媒体课件
教学方法 观察法、讲解法,合作交流法、探究法。
教学过程 师生互动 备注
一、创设情境
1、师用图片在画有方格的磁性黑板上演示:一个小船从左移到右。
师:小船做的是什么运动?(板书:平移)
仔细观察。往哪个方向平移的?它向右平移了几格?你是怎么知道的?
学生操作。然后同桌学生一个提要求,一个操作。
2、小结:为了能看清平移的情况,用虚线表示平移前的图形,实线表示平移后的图形,用箭头表示平移的方向。
二、探究与操作
1、引导学生把这个小船向下平移5格,你会吗?怎么画出来?师:你能把小船从左上方平移到右下方吗?
师:你是怎样平移的?
2、指导学生画出平移图。
小组内学生进行操作。然后用图表示出平移的过程,再相互说一说,是怎样平移的。学生进行大组汇报。
(教师根据学生的操作与汇报及时板书)
3、组织交流不同的移法:还可以怎样平移到现在这个位置?
教师巡视并进行个别指导。
4、师:我们研究过平行线,谁会画平行线?
出示一根直尺和一把三角尺
师:利用直尺和三角尺就能很快画出平行线,谁会?
5、教师指导:让三角尺沿直尺平移,平移前沿三角尺一边画一条直线,平移后再画一条直线。
三、巩固发展:
1.组织学生完成P88练习二十一第2题
学生独立观察后,完成书上填空。同桌学生相互数平移的格数。
2.组织交流反馈方法。组织学生完成P88练习二十一第3题
学生独立完成作图后, 组织展示交流反馈方法。
四、课堂小结
1.通过今天的研究,你学会了什么?
2.你能把学到的知识向你的同桌展示吗?
五、布置作业
1. P88练习二十一第4~6题
2.配套练习册相应练习。
板书设计 图形运动(二) 练习课
为了能看清平移的情况,用虚线表示平移前的图形,实线表示平移后的图形,用箭头表示平移的方向。
教学反思 要教给学生平移的方法,认清一个点为参照物,平移的时候一定要弄清从什么方向平移,以及平移的格子也要数清楚,有的学生还搞不清。
师问:诗歌有什么特点?
① 诗歌的特点:
第一,高度集中、概括地反映生活;
第二,抒情言志,饱含丰富的思想感情;
第三,丰富的想象、联想和幻想;
第四,语言具有音乐美。
② 这几首诗所写的内容都与什么有关?(自然景物)
1.师配乐朗诵冰心的《纸船儿》。
2.让生体会这首诗和上节课学的诗有什么不同。
3.师小结导入
刚才那位同学朗读的是一首现代诗,它和古诗有些不同,那它到底有哪些不同呢,下面,我们就来读读《白桦》这首诗,相信通过同学们的学习,就会明白的
今天我们来教《白桦》这首诗,同学们想不想知道白桦长什么样子,让我们一起看看!这就是白桦树。
现在请大家翻开语文书第105业自由地读诗歌
1、学习饱含感情的词语,有感情地朗读课文,背诵优美的句段。 2、反复诵读,理解和把握课文内容,体会作者抒发的对森林工人的赞美之情。 3、学习森林工人默默奉献、甘愿牺牲的精神。
然后邀请同学读,把诗分分节
白桦”第一节写我的窗前有一棵白桦;第二节写了白桦在雪花中的美,第三节写白桦在寂静的朦胧中的美;第四节写白桦在朝霞中的美。
课文主要讲了什么
本文运用拟人化的手法,以第二人称的口吻,记叙了无名守林工人守林护林的动人事迹,赞美了守林工人默默奉献、甘愿牺牲的精神,表达了守林工人的精神永远值得我们学习。
再看看前面的四首诗,你有什么新的发现?
古诗,一般讲究字数、句数、平仄、用韵;现代诗不像古诗那样在字数和押韵上要求那么严格,它的写法比较自由,句子长短自由,分为若干小节。
这时,你眼前仿佛出现了一幅什么画面?你仿佛看到了什么?想到了什么?体会到作者什么情感?
小组内讨论交流五分钟。
《白桦》以白桦为中心意象,从不同角度描写它的美。满身的雪花、雪绣的花边、洁白的流苏,在朝霞里晶莹闪亮,披银霜,绽花穗,亭亭玉立,丰姿绰约,表现也一种高洁之美。诗中的白桦树,既具色彩的变化,又富动态的美感。白桦那么高洁、挺拔,它是高尚人格的象征。这首诗流露出了诗人对家乡和大自然的热爱之情。
读了这篇文章你有什么感受
诗中的白桦树,既具色彩的变化,又富动态的美感。白桦那么高洁、挺拔,它是高尚人格的象征。读这首诗,除了感受诗歌意境的美之外,还可以强烈地感受到诗人对家乡和大自然的热爱之情。文中无名的守林工人,为了白桦林的安宁,日复一日、孤独寂寞地生活在森林里,他和他的同伴们,心灵是多么的纯洁,胸怀是多么的宽广,品质是多么的高尚,精神是多么的可贵……他们坚守岗位、无私奉献、甘愿牺牲的精神永远值得我们学习。
一、教学目标
1.结合具体情境,理解加、减、乘、除四则运算的意义,掌握四则运算中各部分间的关系,对四则运算知识进行较系统的概括和总结。
2.认识中括号,掌握四则混合运算的顺序,能进行简单的四则混合运算。
3.让学生经历解决实际问题的过程,学会用四则混合运算知识解决一些实际问题,感受解决问题的一些策略和方法。
4.通过数学学习,提高抽象概括能力,养成认真审题、独立思考等良好的学习习惯。
二、教学内容
加、减法的意义和各部分间的关系
四则运算 乘、除法的意义和各部分间的关系(含有关0的运算)
四则混合运算的顺序
解决问题
三、编排特点
1.增加了四则运算的意义和各部分间的关系。
2.突出对知识的梳理和总结。
四、教学重、难点
教学重点:1.掌握三步运算的运算顺序并能正确计算。
2.会解答用两、三步计算解决的实际问题。
教学难点:1.理解“0”不能做除数的道理。 2.解决实际问题。
五、课时安排
本单元共安排5课时(仅供参考,老师们可依据学生情况进行调整)
六、教学建议
1.要注意在实际问题中进行数量关系分析和解答思路的教学。由于本单元是将解决问题和四则混合运算有机结合起来编排的,因此,在教学中每节课都要注意在实际问题中进行数量关系分析和解答思路的教学,这是本单元教学的重点和难点之一。
(1)要注意加强审题和对数量关系的分析。
●有哪些数量?这些数量分别表示什么?
● 哪两个数量之间有关系,有什么关系?
(2)帮助学生掌握解决问题的方法与策略。根据问题选择分析方法:
● 从条件入手● 从问题入手● 从关键句入手
(3)帮助学生掌握思维的外化形式。
●示意图 ● 线段图 ● 枝形图
(4)在训练课中要注意补充相应的习题进行训练。因为关于整数的三步的实际问题在本册中已达到最难的程度,进入了收尾。
2.将探求解题思路与理解运算顺序有机结合起来。在解决问题的过程中,使学生掌握解决问题的策略和方法,同时体会运算顺序规定的必要性。因此,教学中要把握好要求,即在解决问题时可要求学生列综合算式来解决问题,然后在综合算式中明确先求什么,再求什么,与运算顺序结合起来。但老师要明确,在解决问题中并不要求学生一定列综合算式解答。
3.教学中为学生提供自主探索与合作交流的情境和空间。针对每个例题的教学,要充分利用教材提供的生活情境,或现实生活创设现实情境,(知识点要保留)放手让学生独立思考,自主探索,并在合作交流中研讨。在每层的教学中要注意遵循研讨的六环节。
4.关于计算方面的训练。
(1)加强口算的训练。
(2)培养学生认真审题的好习惯。
一审运算符号。
二审数据特点。
三定计算方法。
(3)要培养学生认真书写的好习惯。
(4)教给学生抄题、抄数的方法。
(5)做题时速度适中,一步一回头。
(6)关于作业的批改问题。
(7)练习要经常化。
(8)坚持弃九验算法。
学情分析:
第一课时(例1)
教学目标:
1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3.培养学生发现数学知识和运用数学知识解决问题的能力。
教学重、难点:
教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。
教学难点:从实例中探究加、减法的互逆关系。
教学准备:课件
教学过程
一、理解加、减法的意义
1.理解加法的意义。
出示例1(1)一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814 km,格尔木到拉萨的铁路长1142 km。西宁到拉萨的铁路长多少千米?
(1)问:根据这道题你收集到了哪些信息? (让学生尝试用线段图表示)
(2)请学生根据线段图写出加法算式。
814+1142=1956 或 1142+814=1956
师:为什么用加法呢?
那怎样的运算叫做加法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)
(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)
(4)说明加法各部分名称。
2.理解减法的意义
能不能试着把这道加法应用题改编成减法应用题呢?
(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:
师:根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142 或 1956-1142=814
(2)问:怎样的运算是减法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。
二、探究、理解加法和减法之间的关系。
1.问:上面的这些算式,你觉得它们之间有什么联系?观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。然后以小组的形式进行讨论。
(小组讨论。个别汇报)
2.根据学生的汇报,出示:
加数 + 加数 = 和 被减数 - 减数 = 差
3.师归纳并小结:减法是加法的逆运算。(板书)
4.加法各部分之间的关系。
出示:814+1142=1956
814=1956-1142
1142=1956-814
问:观察算式,你能得到什么结论?
和=加数+加数 加数=和-另一个加数
5.减法各部分之间的关系。
出示:800-350=450
800=450+350
350=800-450
问:通过观察这组算式,你能得出减法各部分的关系吗?
观察这组算式讨论归纳得:
被减数=差+减数 减数=被减数-差
三、练习
1.“做一做” 2.练习一 1题
四、总结
师:谁来说说我们这节课学习了些什么?你知道了什么呢?圃
板书 加、减法的意义和各部分间的关系
加数 + 加数 = 和 被减数 - 减数 = 差
和 - 加数 = 加数 减数 被减数 - 差
被减数 = 减数 + 差
作业布置
A层:练习一2、3、4、5 B层:练习一2、4、5 C层:练习一2、4
第二课时(例2、例3)
教学目标:
1.理解乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用,知道关于0的运算应该注意的问题。
2.学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
3.在分析过程中,培养学生的推理、概括能力。
4.培养学生养成良好的验算习惯。
教学重、难点:
教学重点:掌握乘、除法各部分间的关系,并对乘、除法进行验算。
教学难点:理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答,理解0不能做除数及原因。。
教学准备:课件
教学过程
一、谈话导入。
我们已经做过大量的整数乘除法计算和应用题的练习,对于乘除法知识也有了初步的了解.这里我们要在原有的知识基础上,对乘除法的意义加以概括,使同学们能运用这些知识解决实际问题.(板书课题:乘除法的意义)
二、理解乘除法的意义。
1.理解乘法的意义。
出示例1(1)
用加法算:3+3+3+3=12
用乘法算:3×4=12
师:为什么用乘法呢?
那怎样的运算叫做乘法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是乘法。)
小结:求几个相同加数的和的简便运算,叫做乘法。(出示乘法的意义)说明乘法各部分名称。
2.理解除法的意义。
能不能试着把这道乘法应用题改编成除法应用题呢?
出示例2(2)(3)
(1)问:与第(1)题相比,第(2)、(3)题分别是已知什么?求什么?怎样算?
列式计算:12÷3=4 12÷4=3
(2)问:怎样的运算是除法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。说明除法各部分名称。
(4)教学除法是乘法的逆运算。
引导学生观察:第②、③与①的已知条件和问题有什么变化?
明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算。
3.乘除法各部分间的关系。
(1)引导学生根据上面第①组算式总结乘法各部分间的关系。
(2)教师引导学生进行概括:积=因数×因数一个因数=积÷另一个因数。
(3)引导学生观察第②组算式,自己总结出除法各部分间的关系。
商=被除数÷除数 除数=被除数÷商 被除数=商×除数
(4)想一想:在有余数的除法里,被除数与商、除数和余数之间有什么关系?
(5)练习:做一做
三、0的运算
1.计算:6+0、6-0、6×0、6÷0
2.引发学生讨论:6÷0=?为什么?
讨论:0不能作除数。6÷0不可能得到商,因为找不到一个数同0相乘得到6。
讨论:0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。
小结:归纳所有0的运算
一个数加上0,还得原数。被减数等于减数,差是0。0除以一个非0的数,还得0。一个数和0相乘,仍得0。
3.练习二7题
四、课堂小结
本节课你有哪些收获?你最欣赏谁?
板书
加、减法的意义和各部分间的关系
积=因数×因数 商=被除数÷除数
一个因数=积÷另一个因数 除数=被除数÷商
被除数=商×除数
0不能作除数
作业布置
A层:练习二2、4、9、11、12
B层:练习二2、4、9、11
C层:练习二2、4、9
第三课时(例4)
教学目标:
1.通过学习,学生理解带中括号的四则混合运算的运算顺序,并能熟练习的进行运算。
2.培养学生良好的学习习惯。
教学重、难点:理解带中括号的四则混合运算的运算顺序。
教学准备:课件
教学过程
一、复习引入:
1.一个算式里只有加减法或只有乘除法,按怎样的顺序计算?举例
2.一个算式里有加减法,又有乘除法,按怎样的顺序计算?举例
3.一个算式里有括号,按怎样的顺序计算?举例
4.今天我们学习“四则运算”,到底什么是四则运算呢?
概括:加法、减法、乘法和除法统称四则运算。我们以前学习的混合运算就是四则运算。
二、新知探究
出示例4:96÷12+4×2
1.说说运算顺序。
2.如果在96÷12+4×2的基础上加上小括号,变成96÷(12+4)×2,运算顺序怎样?(先算小括号里面的)
96÷(12+4)×2
=96÷16×2
=6×2
=12
3.如果在96÷(12+4)× 2的基础上加上中括号“[ ]”,变成另一个算式96÷[(12+4)× 2],运算顺序怎样?(说明:一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的)
96÷[(12+4)× 2]
=96÷ [16×2]
=96÷ 32
=3
4.阅读“你知道吗?”
5.总结:
运算顺序: (1)在没有括号的算式里,如果只有加、减法或者只乘、 除法,都要从左往右按顺序计算。 (2)在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。 (3)算式里有括号的,要先算括号里面的。
三、巩固练习
1.做一做
2.选择题:
(1)47与33的和,除以36与16的差,商是多少?正确列式是( )
A、47+33÷36-16 B、(47+33)÷(36-16) C、(36-16)÷(47+33)
(2)750减去25的差,去乘20加上13的和,积是多少?正确列式是( )
A、(750-25)×(20+13) B、(20+13)×(750-25)C、750-25×20+13
四、课堂总结
本节课你有哪些收获?你最欣赏谁?
板书 四则运算
先乘除,后加减,遇到括号先。
作业布置
A层:练习三1、2、3、6、7 B层:练习三1、2、3、6 C层:练习三1、2、3
第四课时(例5)
教学目标:
1.情境创设,灵活运用有余数除法的有关知识解决生活中的简单实际问题,发展应用意识。
2.在合作交流中勇于表达自己的想法,学会倾听他人的意见;通过合理解决实际问题,体会成功的喜悦。
教学重、难点:
教学重点:发展应用意识,运用所学知识解决实际问题。
教学难点:学会倾听,并能正确表达自己的想法。
教学准备:课件
教学过程
一、创设情境,导入新课
师:小朋友们,大家好!听着动听的歌曲.伴着柔和的春风!今天老师想带着同学们一起去公园划船,你们说好吗?
二、主动探索,解决问题
1.出示例5:
(1)师:我们来到了租船处,在这个图中你都发现了什么信息呢?
(2)现在有了这几个数学信息,老师有个问题要让大家帮着老师解决。根据这些数学信息,我们去租船吧!
(出示问题)
2.解决问题
分析:如果都租小船
30÷4=7(只)……2(人)7+1=8(只)20× 8=160(元)
如果都租大船:30÷ 6=5(只)35× 5=175(元)
全租小船,但有1条船只坐了2人,没坐满。是不是还可以再省钱呢?
把这2人和另一条小船的4人都安排坐1条大船,还可以省钱。
6条小船:20× 6=120(元)1条大船:35元。
共花:120+35=155(元)
3.回顾与反思:我们是怎么解决这个问题的呢?(先假设,再调整)
三、巩固练习
练习三4题
四、课堂总结:
本节课你有哪些收获?你最欣赏谁?
板书
租般问题(无浪费,则)
作业布置
A层:练习三5、自己出一道“租船问题”
B层:练习三5、自己出一道“租船问题”
C层:练习三5
第五课时(复习课)
教学目标:
1.通过解决实际问题的过程,使学生掌握四则混合运算顺序,体会0在四则运算中的地位和作用。
2.培养学生观察比较类推的能力
3.培养学生养成认真检查的好习惯。
教学重、难点:
对本单元知识形成体系。
教学准备:
课前学生对本单元知识进行梳理。
教学过程
一、梳理知识体系。
谁来说说在本单元我们都学习了什么内容?
你能不能用图来表示出来。
加减混合运算 同级运算从左到右
乘除混合运算
积商之和(差)的混合运算 两级运算
四则运算 两个商(积)之和(差)的混合运算 先乘除后加减
含小括号的三步计算式题 先算小括号
有关0的运算 0不能做除数
二、本单元知识重难点
你认为本单元中,比较重要的知识是什么?
掌握起来比较难的知识是什么?
在知识运用中,你觉得要注意什么?那些容易错?
四则运算的顺序是什么?
三、四则运算
什么是四则运算?
有哪几种四则运算?
加减混合、乘除混合、加减乘除混合、含小括号
每种运算都要注意什么?
在脱式计算中要注意什么?
四、小组合作,查漏补缺。
教学内容:
P4/例1、例2(只含有同一级运算的混合运算)
教学目标:
1.使学生进一步掌握含有同一级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。
3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学重点:感受运算顺序的必要性,准确提出问题解决问题。
教学难点:掌握解决问题的策略和方法。
教学过程:
一、预习提纲
1、预习例1和例2,总结同级运算的顺序
2、试做做一做1、2题
二、主题图
谈话导入:冬天你们最想参加的户外活动项目是什么?你都去过什么地方,参与过哪些活动?说给大家听。
老师随着学生讲话,出示主题图。
1、说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?
组织学生提问并对简单地问题直接解答。
2、根据图中提出的信息,你能提出哪些问题,怎样解决?
(1)小组交流。
(2)老师巡视指导,引导学生提出数学问题,怎样解决?
(3)集体交流。老师根据学生的回答,整理归纳出相应的板书内容。
(4)小结。
通过补充条件,继续提问。
1. 滑冰场上午有72人,中午有44人离去,又有85人到来。现在有多少人在滑冰?
2. “冰雪天地”3天接待987人。照这样计算,6天预计接待多少人?
等等。
先小组交流,再全班交流。(引导学生理解“照这样计算”的意思)
提示学生可以自己进行条件的补充。
三、汇报交流
1. 小组4人对黑板上的题目进行分配解答。
引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。
2.小组内互相说说你是怎样解答的?
教师巡视并对学生的叙述进行指导。
3. 全班汇报:组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。
注意事项:从思路上对比分步列式和综合版式,使学生明确它们都是用加减法两步计算解决问题,并进一步明确加减混合运算要按从左往右的顺序计算.
(1)71-44+85
=27+85
=113(人)
71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。
(2)987÷3×6 6÷3×987
=329×6 =2×987
=1974(人) =1974(人)
第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。)
第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几 倍。就可以直接用3天的987人数去乘算出来的2倍。等等。
观察:这两道题中,有什么共同点?先说说运算顺序有什么不同?再结合题意理解。
引导学生进一步理解“照这样计算”的意思。
强调:可用线段图帮助理解。(教给方法:我们可以用画线段图、简图等方法来帮助我们理清解题思路,保证准确的解决问题。)
点拨:3天接待987人,怎样用线段图表示出来?6天里接待多少人?又怎样用线段图表示?让学生尝试画一画,并组织交流.
教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。
三、归纳概括:
在例1例2的对比基础上,引导学生总结:在没有括号的算式里,如果只有加、减法或只有乘、除法,都要从左往右按顺序计算。
4.巩固练习
(1)根据老师提供的情景编题。A加减混合。乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率
先个人编题,再两人交换。
小组合作,减少重复练习。
(2)做一做
四、小结,检测反馈
1、学生就本节课的学习内容进行汇报。
这节课我们解决了很多问题,你们都有什么收获?
教师根据学生的回报选择性地板书。(尤其是关于运算顺序的)
运算顺序为已有知识基础,让学生进行回忆概括。
基础练习
1、运算顺序一样的画“●”,不一样的画“○”
(1)12×4÷3 12+4-3 ( ) (2)16×3÷8 16+3+8( )
(3)40-2÷2 40÷2×5 ( ) (4)35-7+2 35-7×2( )
2、计算。
82-36+25 56÷7×8 25×3÷25×3
65×4×9 15+6-3 15×6÷3 80÷8×5
变式练习(判断)
1、28×4÷28×4=1( )
2、492-198=492-200-2( )
3、a台织布机b小时织布c米,则每台布机每小时织布c÷a÷b米( )
拓展练习
1、小明家订4个月的《快乐星球》用了48元,他家订一年的《快乐星球》要多少钱?
2、四班左边站了四行,每行13名同学,右边站了9名同学,一共有( )人。表示( )个十,( )个一。
3、用两种方法解决下面的问题:(只要求列式不计算)
过年了,小兰用压岁钱为自己的小图书馆购买了一批课外书。小图书馆有2个书柜,每个书柜有6层,每层放了15本书。现在小兰的图书馆里有多少本书?
板书设计:
四则运算(一)
1.滑冰场上午有72人,中午有44人离去, 2.“冰雪天地”3天接待987人。照这
又有85人到来。现在有多少人在滑冰? 样计算,6天预计接待多少人?
72-44+85 (1)987÷3×6 (2)6÷3×987
=27+85 =329×6 =2×987
=113(人) =1974(人) =1974(人)
运算顺序:在没有括号的算式里,如果只有加、减法
或者只有乘、除法,都要从左往右按顺序计算。
课后反思:在新课的教学中,我放手让学生自主探索,从解决问题的策略入手,让学生真正理解同级运算的顺序。在练习中,强调情境的一贯性,激发学生解决问题的兴趣,并注重开放性,使不同层次的学生能在练习中得到不同的发展。
第二课时
教学内容:
P6/例3 P10/例4(含有两级运算或有括号的混合运算)
教学目标:
1. 使学生进一步掌握含有两级运算的运算顺序。
2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,
学会用两步计算的方法解决一些实际问题。
3. 使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
教学过程:
一、预习提纲
1、预习例3和例4,总结含两级运算的顺序
2、试做7页做一做,11页做一做
二、主题图引入
(课件)观察主题图,找出条件,提出问题。
引导学生观察主题图。从图中你们都看到了什么?能提出什么数学问题?
一、复习引入创设情境
师:上节课我们学习了有关混合运算的知识,谁还记得,混合运算都有哪些运算规则?
根据学生回答,教师板书:
师:现在是什么季节?冬天大家最喜欢干什么?堆雪人、打雪仗、滑雪一定非常有趣。今天,爸爸妈妈就带着玲玲去冰雪天地游玩。(出示出题图)从图中你们都看到了什么?能提出什么数学问题?
三、汇报交流
就学生提出的问题,出示例3 星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?
学生在练习本上解答此问题。
同桌两人说说自己是怎样解答的。
汇报:教师根据学生的汇报进行板书。
(1)24+24+24÷2
=24+24+12
=48+12
=60(元)
24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。
(2)24×2+24÷2
=48+12
=60(元)
24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。
引导学生讨论:这和我们以前学习的混合运算题有什么不同?(抓住新旧知识的联系,利用迁移,学会新知。)
我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?
这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。
这样的综合算式的运算顺序是什么?
学生总结运算顺序。
在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法.
买3张成人票,付100元,应找回多少钱?
等等。
出示例4 上午冰雕区有游人180位,下午有270位。如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?
小组讨论,独立完成。
小组内互相说说你是怎样解答的?
汇报。(让学生重点说出自己是怎么想的?说清要先算什么在算什么,最后算什么?根据什么?)
(1)270÷30-180÷30
=9-6
=3(名)
270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。
(2)(270-180)÷30
=90÷30
=3(名)
270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。
引导学生观察两个算是的不同点,以及运算顺序的不同。(从思路上、方法上和解题步数上进行比较,体会到解决问题的思路不同,解决方法也不同,计算的步数也不一样,有些实际问题用三步计算解决也可以用两步计算来解决.)
学生进行小结。
教师根据学生的小结进行板书。
四、巩固练习
做一做
五、检测反馈
基础练习
1、在没有括号的算式里,如果有乘法,除法和加、减法,要先算( )。
2、计算32-16+22,先算( )。
3、计算24×(27-19)÷16,应先算( ),再算( ),最后算( ),计算结果是( )。
4、计算比赛120×3-720÷72 240-24×5+54
407-126×3 142+350×6
变式练习
把下面几个分步式改写成综合算式.
(1)960÷15=64 28=36-64 综合算式_____________________________.
(2)75×24=1800 1800=7200-9000 综合算式____________________________
(3)810-19=791 791×2=1582 1582+216=1798 综合算式___________________
(4)96×5=480 480+20=500 500÷4=125 综合算式____________________
拓展练习
1、明珠小区去年年底全部改用了节水龙头,,王奶奶家上半年节约水费42元,李奶奶家上半年节约水费54元,平均每月李奶奶家比王奶奶家多节约水费多少元?2、一位老爷爷说:“把我的年龄加上12,再除以4,然后减去12,再乘10。恰好是100岁。”这位老爷爷现在多少岁?
板书设计:
四则运算(二)
星期天,爸爸妈妈带着玲玲去“冰雪 上午冰雕区有游人180位,下午有270位。
天地”游玩,购买门票需要花多少钱? 如果每30位游人需要一名保洁员,下午要
(1)24+24+24÷2 (2)24×2+24÷2 比上午多派几名保洁员?
=24+24+12 =48+12 (1)270÷30-180÷30 (2)(270-180)÷30
=48+12 =60(元) =9-6 =90÷30
=60(元) =3(名) =3(名)
运算顺序:在没有括号的算式里,有乘、 运算顺序:算式里有括号,要先算括号里
除法和加、减法,要先算乘、除法。 面的。
课后反思:利用情境激发学生的联想,用来解决实际问题的混合运算,为学生有意义地接受学习创造了条件. 将计算和解决实际问题有机结合起来,使学生体会到了计算是解决实际问题的需要,从而增强了学习计算的内在需求.
1、英语科目教学计划参考文本高二年级是高中的重要阶段,又是高中三年的承上启下阶段。因此,让学生在高二年级打好学科基础并有所发展是极其重要的。下列目标应在本学期内到达:巩固、扩大基础知识;培养口头和书面初步运用
1、数学学科教学计划范本一、学习情况分析(知识、能力、学习习惯等)五年级一班现有学生_人。大部分学生拥有自我学习能力,而且抽象思维能力非常充足,具有观察、分析、自学的能力,不过探讨力还需要提升,本学期重点还是抓好
1、高二下学期生物教学计划1.合理安排教学进度,高质量完成本学期教学任务。本学期要完成教学任务是人教版选修本三《现代生物科技专题》以及进行必修一的实验复习,如果时间允许还将进行第一轮复习(主要是必修一第一章-
1、语文高一教学计划汇总大全一本期的主要任务 完成必修3和必修4的教学任务;2、加强基础练习,落实单元训练,努力提高学生考试成绩;3、加强备课工作,落实集体备课,通过集体备课促进共同进步;二教育教学指导思想1.结合《普
1、七年级历史教学计划合集大全本学期我将以校教学计划为指导,落实推进课程改革,形成先进的课程结构和综合的教学理念,提高语言能力、教学能力;在历史与其他学科之间建立对话的能力,努力提升教学的境界;实施综合性学习,提
1、初中体育教学工作计划完整版一、基本情况1、学生情况初一年级3个班,我带的每班约33左右,以男生居多,大多数学生身体健康,无运动技能障碍。身体素质和基本技能在原来的基础上都有所提高。2、技能情况初一年级学生喜欢跑
1、上学期教师教学计划新学期又开始了,为使今后的工作能更顺利的开展,特制定此工作计划,请领导多多批评指导。一、教材分析高一上学期学习历史必修ⅰ“政治文明历程”,着重反映人类社会政治领域发展进程中的重要内容。政
1、化学老师教学计划化学是一门初三刚开设的新课程,经过一学期的学习,学生学习的热情较高,教师应以期在毕业会考中好的'成绩。本期担任初三50、51、52班的化学教学任务,三个班共有学生人。学生来自于城市与农村,基础高低参
1、幼儿小班教学计划总结合集一、 现状分析本班幼儿共30人,男孩13人,女孩17人,大部分孩子在入我园前已在其它幼儿园入读。其中本学期新插班7人。班上的孩子年龄在三岁半—四岁半之间。由于年龄上存在差异,以及在情感